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Overview of Presentation
• Overall Goal

• Use Pade and Prony methods to implement digital non-Foster 
devices (such as negative capacitance)

• Review Prior Analog non-foster approaches
o Analog non-Foster background

• New Digital RC Circuits
o Theory & Prior Backward Difference Approach
o New Proposed Pade and Prony Approximations

o Theoretical Results
o Measured Results
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Analog Non-Foster Background
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• “Normal Circuits”
o Key passive devices
-Resistors:   R
-Capacitors: C
- Inductors:   L

o Used just about everywhere in 
electronics 

Non-Foster Circuits: What are They?

Reactance

• Non-Foster Circuits
• Of primary interest here

o Negative Capacitors
o Negative Inductors

ØEverything is “flipped”
ØEnables wide bandwidth

Negative 
Capacitor

-CX

ω

C
Positive
Capacitor
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Why Digital Non-Foster?
• Several problems with analog implementation

o Instability 
o Component tolerances 
o Configurability
o Compatibility with digital IC processes

• Solution: digital non-Foster
o Repeatability and control of digital tech. improves stability
o Potential for digitally/software   tunable/adaptive

• Today: The design of a digital Non-Foster RC series circuits 
using Pade and Prony indirect modelling methods.
o Implementation Prototype 
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What is Digital Non-Foster?

•Measure voltage V
•Set current I
•Let H(z) = 1/R
•So, DAC current: I = V/R 

… yields world’s most expensive resistor!
… but is tunable
... Useful in implementing exotic impedances

Current 
out DAC

H(z)I

V Volts in
ADC

R

Simple Example: Digital Resistor
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Digital non-Foster Thevenin Form  

• DAC source plus Rdac is a Thevenin source 
• H(z) determines impedance behavior 
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Theory: Digital non-Foster Impedance
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Input impedance is then:
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Prior Backward Difference Method
Digital RC Circuits
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Theory: Digital Non-Foster RC Circuit
Analog series RC circuit with series resistance Rser:

Taking the derivative:

Assuming: 
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Theory: RC Circuit Transfer Function

Taking the z transform to solve for H(z):
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Why Signal Modelling Techniques over 
Backward Difference

Backward Difference

• Approximates derivative
• Imperfect approximation

Signal Modelling Techniques

• General-purpose, least-square approach
• Approximate and model desired impedance
• Order of system can be decided based on requirements
• Modelling techniques perfectly matches the first few points
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Proposed Pade Design Method
Digital RC circuits
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Theory: Pade Design for RC Circuit
Pade approximation method is a form
of indirect modelling

In the Pade Method: 

where g[n] is the desired impulse response, X(z)=1 and
Y(z)≈G(z), then B(z)X(z)=A(z)Y(z)≈A(z)G(z) results in the Pade
Approximation form

H(z) = Z(h[n])

( ) A(z)G(z)B z =
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Theory: Pade Design for RC Circuit

After taking inverse z-transform on both sides:

Pade method exactly matches first few points
of h[n] to g[n] by solving for the filter
coefficients. In matrix form, the Pade method
involves finding solution for A and B such
that:

Our Pade approximation exactly
matches three points then:

where the filter coefficients a1, b0 and b1 are solved for using
Pade procedure
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Proposed Prony Design Method
Digital RC circuits
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Theory: Prony Design for RC Circuit
Prony method forms a solution A and B by minimizing the square error over a
variable number of points of g[n], instead of exactly matching the first few
points of g[n].

For eight points of g[n], the Prony method 
yields:

where the filter coefficients a1, b0 and b1 are solved for using a least squares
Prony procedure

Prony method has zero error in approximating g[n] by h[n], but typically has
error for subsequent points.
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Measured Results
RC Circuits
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RC Measurements

• Rser = 500 ohms
• C = 0.1 µF
• RDAC = 1000 ohms
• T = 20 µs 

C = 0.1 µFRser = 500 ohms
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sC

= +

1.2523( )
0.7523Prony

zH z
z
- +
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Prony Performs better
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RC Measurements

• Rser = -500 ohms
• C = -0.1 µF
• RDAC = 1000 ohms
• T = 20 µs 

C = -0.1 µFRser = -500 ohms
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Prony Performs better
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Comparison of Pade and Prony Approximations

Pade Prony

Pade Method forms a pole-
zero model by exactly
matching the first few points
of the indirect model

Prony method forms a pole-
zero model by minimizing the
square error over a number of
points

Model doesn’t guarantee
stability

Some Models of all pole Prony
models guarantee stability

Output is perfectly matched
for the first NA+NB+1 points

Output is perfectly matched
for greater than NA+NB+1
points
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Implementation Results
Digital RC Circuits
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• FRDM-K64F ARM embedded board
• ADC~1 MHz
• DAC~1 MHz
• MCU Clock ~ 120 MHz

Prototype
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Prony RC Implementation

• Rser = 50 ohms
• C = 2 µF
• RDAC = 1000 ohms
• T = 20 µs 

C = 2 µFRser = 50 ohms
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Summary
• Pade and Prony methods

• compared to a previous backward difference for digital RC

• Pade vs Prony
• Both closely matched the desired resistance at the mid-band range
• Both reactance of closely matched the backward difference
• Pade resistance very high at low frequency
• Prony design closely matches the predicted theoretical design

• Pade & Prony give designer two new design tools
beyond prior backward difference methods
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Related and Upcoming Work

Related Work
• Positive and Negative Digital RLC Circuits
• Different Signal modelling techniques to get better

approximate results
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Thank You!
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Questions?
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BACK-UP Slides 
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Classical Digital Filter Design Methods

• Start with Analog filter design and convert to a 
digital filter

• Some of the methods are
• Impulse Invariance Methods

• Suffer from Aliasing
• Bilinear Transform Methods

• Map z-plane into s-plane (wrapped)
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Prior Backward Difference Method

• ADC with clock period T digitizes the analog input voltage
signal vin(t) creating a discrete-time signal vin[n] =vin(nT)

• The DAC input of the output of digital filter H(z) is then

where H(z) is the z-transform of impulse response h[n] in
the convolution above

[ ] [ ] [ ]DAC inv n h n v n= *
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• Design goal is to find H(z) that produces the desired analog
impedance at vin(t) corresponding to the analog circuit

• For RC circuit,

Differentiating with respect to time yields

Applying the backward difference approximation, gives

and

This results in Backward difference approximation

The impedance of non-Foster circuit is given by
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Why Non-Foster Circuits?

• Of particular interest:
o Negative capacitors
o Negative inductors

X

-L

L

ω

X L

ω

C

Positive 
Inductor

Negative
Inductor

Negative 
Capacitor

-CX

ω

C
Positive
Capacitor
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Current Points for positive RC circuit

Current iin[n] for Rser= 500 ohms, C= 0.1µF and T=20µs. Blue curve is
continuous-time current, red dots are discrete-time current samples iin[n]
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Current Points for negative RC circuit 

Current iin[n] for Rser= -500 ohms, C= -0.1µF and T=20µs. Blue curve is
continuous-time current, red dots are discrete-time current samples iin[n]
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Block Diagram
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