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Abstract—Assistive robots are used by various individuals
with medical disabilities to help with tasks such as movement.
A subset of these individuals are patients with the locked-
in syndrome; these patients cannot communicate with a robot
through traditional means, such as with a joystick. This work
designs a navigation scheme which allows for an assistive robot
to be controlled by patients suffering locked-in syndrome, thus
allowing the patient to move about their environment. Navigation
is accomplished using an algorithm that combines autonomous
robot movement and communicated commands from the patient.
To bridge the communication gap between the patient and robot,
naturally occurring error-related potentials are used. These ERPs
can be used to establish communication between the patient and
robot without relying on the patient interacting with physical
stimuli, such as a keyboard or joystick. The commands commu-
nicated to the robot comes in the form of a binary: correct or
incorrect command in response to the movements of the robot at
an intersection in a structured building. While more complicated
commands can be classified from event-realted potentials (ERPs),
such as directional movement, this simple command allows for
fast reliable classifications and responses. To make up for the lack
of complexity from patient commands, the robot is leveraged to
handle tasks such as wall avoidance, while a navigation algorithm
is designed to minimize the inputs required by the user when
taking a commonly traveled path. The benefits of using a semi-
controlled robot for navigation vs a fully autonomous robot is
compared in terms of the time taken to discover and navigate
an initial path to a destination. This work serves as a proof of
concept for the proposed semi-autonomous navigation scheme to
validate future work into the proposed design.

Index Terms—assistive robots, error-related potentials, brain-
computer interface, robot navigation, convolution nerual network

I. INTRODUCTION

Assistive robots pertain to a robot that helps individuals
with disabilities by providing assistance with environmental
interactions. The primary purpose of such robots is to enable
individuals with disabilities to perform at a level relatively
comparable to individuals without disabilities. Tasks such as:
being able to navigate freely, pick and place objects from floors
or shelves, eating/drinking, and personal hygiene [1] are exam-
ples of functions that robots can assist with. For most of these
tasks, communication plays a vital role in understanding the
requirements or needs of a disabled individual. Human com-
munication is defined as the exchange of information verbally
or non-verbally and can include utilizing keyboards, speaking
commands, and more. Researchers have built systems that

can be controlled using a variety of different communication
methods such as joysticks, eye movements, head movements
[2], [3]. Unfortunately, portions of the population can lose the
capability to communicate via unfortunate circumstances such
as accidents or birth disorders. Examples of conditions that can
result in severe motor paralysis are strokes, severe cerebral
palsy, motor neuron disease, amyotrophic lateral sclerosis,
and encephalitis [4]. Many areas of research are actively
focusing on ways to improve the life of these impaired. One
particularly challenging condition is seen with patients who
have neuromuscular disorders, either inherited or acquired
by other factors. These patients have high needs and no
practical way to communicate those necessities. These patients
are often referred to as having locked-in syndrome [5] and
have a complete loss of control over their voluntary muscles.
Essentially, these patients are unable to speak and move but
are conscious and can think and reason [6].

With the widespread and popular integration of robotics
into daily life, it is no surprise to see robots now assisting
disabled individuals. However, those who suffer from locked-
in syndrome or patients with neuromuscular disorders still
struggle to communicate with assistive robots, limiting the
usefulness of these robots. This research focuses on patients
who are affected by locked-in syndrome and seeks to help
them achieve greater independence by enabling communi-
cation from the patient to assistive robots without relying
on physical stimuli. This is accomplished through technolo-
gies such as Brain-Computer Interface (BCI)/Human-Robot
Interaction (HRI) which provide an alternative communication
bridge between a human brain and a robot.

BCIs enable persons to communicate using their human
brain signal. There are various signal acquisition techniques
among which Electroencephalography (EEG) signals is pre-
ferred or well known for its advantages which include: non-
invasive, cost-effective and high temporal resolution [7]. The
use of EEG signals for controlling robotics has seen many
implementations, dating back to pioneering works such with
Bozinovski et al. [8] where a methodology was implemented
for controlling a robot with EEG Alpha Rhythm signals.
EEG signals have many derivatives; one such is event-related
potentials (ERP) signals. These signals are generated by a
population of neurons in response to a perceptual, cognitive or
motor event, in opposition to spontaneous activity that reflects
the brain activity related to volunteer self-paced tasks. These978-1-7281-6861-6/20/$31.00 ©2020 IEEE
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Fig. 1. Visualization comparing general types of navigation control (a) Fully
autonomous method that simply wanders around the environment until a
destination is reached (in this case a purple door); (b) Semi-controlled method
that moves towards the center of any intersection detected then waits for user
input to direct it towards an exit from the intersection.

events/stimuli can be either visual, auditive or vibrotactile [9].
ERP waveforms generated are categorized according to latency
and amplitude after the presentation of stimuli, such as error-
related potentials [10].

Utilizing these signals it becomes possible to control an
assistive robot. Controlling an assistive robot could be sub-
divided into three broad categories:Completely controlled,
Shared/Semi-controlled, and total autonomy. Among various
tasks, we consider indoor navigation for locked-in syndrome
patients. In this case, complete control isn’t possible as these
systems are either controlled using a joystick or keyboard.
For these patients, only total autonomy is possible. The
problem with enabling total autonomy for an assistive robot
is that given a start point the robot must randomly explore
each and every region in the hopes of stumbling upon the
correct destination, as shown in Fig. 1(a). Hence we use
a BCI system with a mobile robot to allow a patient to
semi-control the navigation of the robot via EEG signals.
Using the mobile robot and an hallway intersection detection
algorithm we develop a navigation scheme that only requires a
patient to input decisions at hallway intersections while relying
on the mobile robot to handle local obstacle avoidance and
movement, an example of such movement can be seen in Fig.
1(b). The overall focus of this work is the task of navigating an
patient sitting on a mobile robot from a starting location to an
ending destination inside a structured building while requiring
minimum input from the patient.

In this paper our key contributions are:
• Novel use of error related potentials to control a robot

for indoor navigation.
• User-based preference for the navigation.
• Navigation for locked-in patients without human aid.

II. BACKGROUND AND RELATED WORKS

A. Error related potential

ErrPs are characterized by an initial positive peak occurring
at about 200ms after an event followed by a massive negative
deflection at about 200-250ms and a second positive peak at
about 320ms [11]. These waveforms are reported to have a

similar pattern in tasks using different modalities [12] [13] [14]
and were almost identical when tested after several months
[15]. Hence, the methods used to classify the signals can be
very well generalized.

Studies conducted in past years intended to classify the ErrP
signals using various classification algorithms. Errikos et. al
[16] proposed a system which could extract features based
on statistical measurements from averaged ERP recordings.
Classification of the signals was accomplish using k-nearest
neighbors (kNN) and support vector machines (SVM). Sim-
ilarly, Ricardo and Millan [17] used a Gaussian Classifier
by assigning the same prior probability for both correct and
error classes. The most commonly used classifiers were the
Gaussian Classifier, logistic regression, SVMs, and linear
discriminant analysis and its variations. However, it should
be noted that these works utilized varying prepossessing tech-
niques, thus while the classification performances are noted
between 70 and 80 %, the difference in prepossessing could
be partially responsible for discrepancies in feature selection
and performance metrics.

Deep learning based architectures have also seen their use
in classifying EEG signals. Hubert and Axel [18] first used
ConvNets, a deep learning based network, for detection of
P300 in oddball paradigms. Later, Robin et al. [19] used Con-
volutional Neural Networks for decoding EEG signals which
could classify left, right, feet and rest movements. Similar
work was performed by Siavash et al. by using the parallel
Convolutional neural network and energy based features [20].
However, not much work has been done towards using deep
learning approaches for error related potential classification.

B. BCI in robotics

Early examples of robot control using bio-signals can
be seen in works conducted by Bozinovski et al. such as
controlling a robot using using EEG alpha rhythm signals
[8]. Further work by Bozinovski can be seen as a robots
trajectory was controlled using EEG/EOG signals gathered
from the optical region of a human head [21]. An in depth
summary of the pioneering works in this area of research
is covered by Bozinovski [22], specifically focusing on early
demonstrations of BCIs done in Europe. Iturrate et al. utilized
P300 signals to control the navigation of a wheelchair. Using a
virtual driving environment for the participants, the wheelchair
was mobilized autonomously. To initiate movement, the user
concentrates on a location on the map which is detected by
the classifier and sent to the wheelchair. At this point, the
wheelchair commences navigation to that point. Iturrates team
also conducted experimentation with a robotic arm where the
ErrP was considered as a reward signal. The robotic arm had 5
degrees of freedom for performing correct/incorrect reaching
tasks. While the tasks were being performed the subjects
brain data were recorded. Reach by Jiaxin and Zhang used
a combination of EOG and EEGs signals to control a robot
[2]. Zhang designed classifier which classified blink, gaze,
wink, and frown. Linear discriminant analysis was used to
classify the event-related potentials. Tests were conducted on



two different robots: a humanoid robot NAO and a mobile
robot Kobuki. [23] utilized a robotic quadcopter which was
controlled in 3-D physical space using EEG signals. This was
performed based on P300 signals which were used in order to
classify left vs right hand, arm movement vs rest and constant
forward velocity. These classified movements corresponded
to commands used to navigate quadcopter. The research was
also conducted by [24] on real-world car driving tasks which
worked on the same principle as the previous work. In recent
years it can be noted that most works were focused towards
either EOG signals or P300 signals. There has not been much
research conducted towards utilization error related potential
up to the point of the mentioned research.

In late 2016s, Ehrlich and Cheng, came up with a neuro-
based method for detecting erroneous robot action. Utilizing
the concept of error related potentials in human-robot interac-
tion, they were capable of determining whether robotic actions
were incorrect. In their experimentation, a humanoid robot
was placed such that it was gazing directly at a participant. A
target stimuli was given in the form of a white rectangular size
3x3 cm appearing either left, right or above the robot head.
Once the arrow blinked, the robot had to turn its head in that
direction. Linear discriminant analysis was used to classify the
erroneous signals [25]. Researchers from the Massachusetts
Institute of Technology came up with a real-time system
where the Baxter robot was used to perform specific tasks
[26]. They proposed a feedback-based system that corrected
the robots mistakes in real time. The robot simultaneously
performed tasks such as classifying objects into two classes
while utilizing the human brain signal as feedback. To classify
the error related potentials they used an elastic net.With
MITs research, the usage of error related potentials garnered
interest in researchers for its various possible applications.
Such applications include a multi-class object selection tasks
where a robotic arm moves would hover over an object. A
human subjects brain would then be read, and based on the
response elicited by the subjects brain the robot would pick up
the object its hand was hovering above [27]. Similar research
was performed by [28] to pick and place objects with self-
learning by using error-related potentials as feedback such that
the robot learns simultaneously as per user choice. Another
similar work was conducted by [29]. However, this work
largely focused on navigating and identifying locations of
interest in the local area of the patient and robot.

III. METHODOLOGY

The general methodology of the framework presented in this
work can be seen in Figure 2. Robot motion is determined
by a loop of navigation and mapping actions. The navigation
is semi-controlled. User feedback generated from the visual
stimuli of motion is used to command the robot at key points
during navigation. The visual stimuli observed by the human
eye is processed by the brain which generates signals that
are in turn processed by an ErrP classifier. The classifier then
outputs simple binary commands to the robot allowing the user
to affect the motion of the robot at key points. The key points

in this scenario are hallway intersections. When a hallway
intersection is detected by the robot for the first time, it is
added to a global map of intersections. The path the robot takes
through each intersection on the map is stored and is used in
the future to attempt to automatically navigate the robot to
an end destination based on previous paths taken. If the robot
ever reaches an intersection and navigates incorrectly, i.e. the
robot begins to move toward the wrong exit of the intersection,
then the user can correct that navigation.

A. ErrP Classifier

With the rapid growth and outperforming results of a
machine and deep learning algorithms in the field of computer
vision, natural language processing, speech analysis, there
has been an interest towards the usage of these algorithms
for EEG signal classification. As per the review of ten-
year update in BCI applications for classification, convolu-
tion neural networks (CNN) have proved to have performed
best even in EEG classification [30]. In this current work,
we use Convolutional Neural Networks (CNNs), one of the
deep learning architectures, for classification purposes. The
significant component of CNNs is their ability to learn local
patterns. Commonly CNNs are a set series of stages such as a
convolutional layer, pooling layer, ReLU activation, and Fully
connected. and some of the recent advancement layers such
as Batch normalization and dropout layer. CNNs can have
multiple layers, with their initial layers extracting the low-level
features and as it goes deeper into the network more global
and high-level features. The main advantage of using CNNs
is its ability to learn from raw data which makes into the end-
to-end analysis. Without any human supervision, CNNs can
naturally detect the salient features from the input data. CNNs
uses special convolution, pooling processes and also parameter
sharing which makes it computationally efficient.

B. Navigation

In this work we assume that our environment is a structured
building with four and three way intersections. We assume that
our robot does not have a pre-existing map of its environment.
The robot must build a map of intersection locations hich will
be used later for the semi-controlled navigation scheme. The
general problem of simultaneously localizing and mapping an

Fig. 2. Block diagram of overall system



environment is referred to as SLAM and is a common aspect
of many robotic applications. SLAM involves estimating the
pose of a robot while simultaneously building a map of its
environment with no prior knowledge of the said environment.
This task can be represented as a causality dilemma, where
the pose of the robot is ascertained with respect to a global
frame, or map, and the creation of a map requires knowledge
of the robot’s pose [31]. There are various algorithms used
to solve this problem, many of which use a landmark-based
approach [32]. Landmarks are a distinguishable feature in
an environment which can be observed via devices such as
a camera or laser rangefinder. Said devices can be used to
measure properties such as the distance or bearing of the
landmark relative to the robot. As the robot traverses the
environment it continues to observe and collect landmarks
while simultaneously building a map and localizing itself
within the map. The sensed distance and bearing to each
landmark can be combined with other factors like odometry
readings to get a refined estimation of the robot pose and map.
In this work, SLAM is accomplished using walls as landmarks,
recognized with a laser rangefinder, and a particle algorithm,
part of the ROS Gmapping package [33], accomplishes the
localization and mapping. Our work builds on top of this
package by identifying intersections when observed by the
laser range finder and creating a history of paths taken based
on which exits from each intersection are taken.

1) Intersection identification: Intersections are identified
using the data received from the laser range finder. The data
received by the laser range finder is broken down into groups
of connected components, the raw dat taken from the laser
range finder can be seen in Figure 3. These connected com-

Fig. 3. Hallway intersection as seen by a laser range finder. Robot with laser
range finder is located at position (0,0) and is orientated at 0 degrees.

ponents are then considered to be candidate walls. Candidate
walls are generally broken into two categories: corners and
straight walls. Straight walls are easily identifiable as the
majority of the points can be fit a to a simple linear equation.
Corners are more complicated as they can be broken down into

two walls separate walls that are perpendicular and intersect
at a singel point. To accomplish this the RANSAC method
outlined by Rissgard [34] is used. If the candidate corner
is found to have two walls that intersect at a ninety degree
angle then it is considered to be a corner. In order for a four-
way intersection to exist there must be two corners and two
walls, if this requirement is met then the algorithm moves onto
the next stage. The two corners and the nearest edge of the
other two walls are cataloged. If the distance between each
of these nearest neighbors are all roughly equivalent, then
the data received by the laser range finder is considered to
be an intersection and we search for a location where lines
drawn from one corner/edge to another corner/edge intersect.
That point is the center of the intersection. A visualization of
this process can be seen in Figure 4 . A similar algorithm is
followed for three-way intersections.

Fig. 4. Determining the center of the hallway intersection by identifying
where lines drawn between the farthest neighbors of the four closest line
ends and corners intersect

C. Intersection Exit Determination

When the robot approaches an intersection, ideally it would
automatically rotate towards the most likely exit from the
intersection that the user would pick based on the destination
then continue on that path, thus minimizing the number of
commands the user must give. However, the robot is unaware
of the final destination. To achieve this goal a history of all
previous paths taken are stored based on which exit of an
intersection was taken. The robot will always automatically
rotate towards whichever exit at an intersection has been taken
the most number of times according to all previous paths. At
each intersection, paths that do not include an exit taken will
be removed from the pool of possible paths until eventually
there is either a single path left, or no paths at all. Given
the scenario where no paths remain the robot will randomly
wander and adjust its navigation based on user input.



(a) (b) (c)

Fig. 5. Gazebo simulation visualization (a) Birds eye view; (b) Turtlebot view; (c) Schematic of simulated environment

1) Fully autonomous navigation: Fully autonomous nav-
igation is used as a metric to compare our semi-controlled
navigation algorithm against. It is accomplished using a simple
explore algorithm that avoids walls and marks intersections
while executing random motions. The robot attempts to move
forward when it encounters a wall the robot rotates until
there are no obstacles in front of it. If the robot detects an
intersection then it marks the location of the intersection on the
map and randomly exits the intersection. That exit direction
for that particular intersection is then marked as ’used’ and
the robot will not exit from that direction in the intersection
the next time it must move through the said intersection. This
process continues until the destination is reached, which in the
case of our experiment is a particularly colored door.

2) Semi-Controlled navigation: Semi-controlled navigation
is accomplished using a combination of user input and move-
ment. The robot moves along the center of a hallway until
an intersection or wall is detected. In the case of a wall, the
robot will rotate until the wall is no longer in front of the
robot. In the case of the intersection, if it is the first time the
intersection was detected, it gets marked and stored as part of
the current path. If the intersection was already marked, then
the robot searches the possible path pool and selects the exit
from the intersection that matches the largest number of paths.
The robot then rotates towards that intersection exit. If the user
provides an ’incorrect’ input once rotation is complete, then
the robot rotates towards the next exit of the intersection in a
clockwise fashion. If the robot ever exits an intersection in a
way that no other path has done before, then the current path
is considered new and is added to the robots memory. This
process continues until the destination is reached.

IV. EXPERIMENT PROTOCOL

A. Simulated Brain

EEG signals were collected from a publicly available dataset
which contained 64 electrode recordings sampled at 512Hz of
six subjects recorded over two sessions [35]. The procedure
to classify the EEG data into ErrP or non-ErrP was as
per the work is seen in [36]. The raw EEG signals were

collected and preprocessed using EEGLAB [37]. Spatially,
preprocessing was done using a common average filter and
spectrally the preprocessing was done a using bandpass filter
between 1Hz and 10Hz in order to remove the EEG artifacts.
The electrode selection process was completed by visualizing
the topographical maps of scalp activity. Out of 64 electrodes,
two electrodes were chosen ’FCz’ and ’Cz’ and represented as
a 2x512 matrix. A 5 layered CNN architecture was developed
to classify the signals named ConvArch2 in [36].

Fig. 6. Hallway through which real world experimentation was conducted
using a Turtlebot 2.

Fig. 7. Visualization of Turtlebot 2 identifying the destination door based on
colored marker.

These classified signals were then filtered such that only
correct signals were fed to the robotic agent and used for de-



termining navigation direction at intersections. In other words,
the ideal path for the robot form the start point to end point
was predetermined, that path was used to pre-generate signals
at each intersection corresponding to a correct exit, then those
signals were fed to the robot during the experimental trials.
The emphasis of this work being a proof of concept for
future implementations with signals gathered in real time. The
command from the signal comes in the form of a binary.
Other more complicated classifiers can be used to determine
directions of movement, such as forward/reverse/left/right,
however, we instead choose to leverage the capability of the
robot to complete simple navigation with the goal of reducing
the effort and time needed for the user to send and have
a signal successfully processed while maintining sucesfull
global navigation to an end destination.

B. Simulation environment

Gazebo was used as the main simulation software for this
work. An environment of colored doors and hallways was
constructed and is visualized in Figure 5. The exact dimensions
of the environment are visualized in Figure 5(c).

The walls represented obstacles in the environment while
the colored doors represent destination. Various three-way and
four-way intersections were designed as might commonly be
seen in buildings. A simulated Turtlebot 2, also referred to as
a turtlebot, was commanded via the Robot Operation System
(ROS) for use as an agent in this simulation. The simulated
turtlebot used a laser rangefinder and odometry information
in order to map its surroundings. A simulated RGB color
camera took pictures of the environment to determine if the
turtlebot had reached the appropriate destination door. Tests
conducted in this environment included running the Turtlebot
autonomously with a gmapping SLAM algorithm [33] until
it reached its destination, utilizing the methods outlined in
section III subsection B sub-subsection i. As well as running
the turtlebot as semi-controlled, using user input in the form of
correct/incorrect at intersections in order to guide movement
as described in section III subsection B sub-subsection ii.

C. Real environment

Experimentation was also conducted in the real world using
an 25-meter hallway with a single 90-degree turn leading to
an 17-meter hallway. Colored markers were placed on doors
to function as an icon in place of the colored doors in the
simulation. No schematic of this hallway is given, however, a
visual approximation of its shape and dimension can be viewed
in Figure 9. Figures 6 and 7 also provide a visualization of
the hallway environment.

V. RESULTS

A. Simulation Results

The semi-autonomous navigation algorithm simulation re-
sults can be seen visualized in Figure 8(a). Results were
measured in terms of the time required to complete the trial.
The time to complete the simulation trial was 2 minutes and
34 seconds.

(a) (b)

Fig. 8. Results of simulation experimentation. The red line represents the
path of the turtlebot. Black lines represent walls, white squares represent open
space, and gray squares represent unknown. (a) Semi-Controlled Navigation
results from simulated hallway using intersection identification and user
inputs, visualized via Rviz.; (b) Autonomous navigation results from simulated
hallway using randomized motion until a destination point is observed
visualized via Rviz

(a) (b)

Fig. 9. Results of real world experimentation. The red line represents the path
of the turtlebot. Back lines represent walls, white squares represent open space,
and gray squares represent unknown. (a) Semi-Controlled Navigation results
from real world hallway visualized via Rviz.; (b) Autonomous navigation
results from real world hallway visualized via Rviz

The fully-autonomous navigation algorithm simulation re-
sults can be seen in Figure 8(b). The time to complete the
simulation trial was 6 minutes and 15 seconds.

B. Real World results

The semi-controlled navigation algorithm results can be see
in Figure 9(a). The time to complete the trial was 5 minutes
and 56 seconds. The fully-autonomous navigation algorithm
results can be seen in Figure 9(b). The time to complete the
trial was 14 minutes and 32 seconds.

The results of the simulated and real world experimentation
are summarized in Table I.

TABLE I
TIME TO REACH DESTINATION FOR SIMULATED AND REAL WORLD TRIALS
OF SEMI-CONTROLLED AND FULLY AUTONOMOUS NAVIGATION SYSTEMS.

Simulated Real World
Semi-Controlled Autonomous Semi-Controlled Autonomous

2min:34sec 6min:15sec 5min:56sec 14min:32sec



VI. CONCLUSIONS

This work shows proof of concept that the proposed semi-
controlled navigation scheme has the potential to aid impaired
user in reaching their destination inside a structured building
with minimum effor required in terms of user input. The
semi-controlled navigation scheme was compared against a
simple autonomous navigation scheme. The semi-controlled
navigation prioritized identifying and mapping intersections,
then gathering simulated user input from a BCI, classify-
ing the input, and using the resulting signal to determine
the appropriate exit from an intersection for a given path.
The autonomous navigation scheme simply avoided obstacles
while randomly navigating the area in search of the specific
destination represented as a colored door. Our results show
that given basic simulation and experimentation the semi-
controlled navigation scheme outperforms the autonomous
navigation scheme based on the amount of time taken to reach
a destination. It should be noted that the majority of the saved
time comes from the autonomous navigation scheme taking
an incorrect turn at an intersection and exploring an area of
the environment that is not relevant to the destination of the
user. If the simulation and experimentation had be done over a
more extensive area without pre-filtering the classified signals
then the results of the semi-autonomous navigation algorithm
could be expected to decrease as incorrectly classified signals
would cause the robot to exit an incorrect intersection. The
results validate the potential for the proposed navigation
scheme and provide the motivation to continue research into
this work. Foremost, is the need for more extensive testing.
Future work largely revolves around testing the proposed semi-
controlled navigation scheme against a variety of complex
navigation algorithms across much more detailed and complex
environments. Optimistically, future work would also propose
that inputs for controlling the robot be gathered in real time
from a patient rather than through simulation.
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